
Marshak A.9 A. Davis, W. J. Wiscombe, and R. F. Cahalan, 1997: Physical Simulation of High-Reso!utjon Satellite 

*maiFs for Fractal Cloud Models. In Fracrul Frontiers. Eds. M. M. Novak and T. G. Dewey, World Scientific, 

Singapore, pp. 301-310. 

PHYSICAL SIMULATION OF HIGH-RESOLUTION SATELLITE 

IMAGES FOR FRACTAL CLOUD MODELS 

A. MARSHAK,U A. DAVIS,” R. CAHALAN, AND W. WISCOMBE 

NASA - Goddard Space Flight Center, Climate & Radiation Branch, Greenbelt, MD 20771, USA 

Based on fractal models for the horizontal distribution of cloud density, Landsat-type (i.e., 30 m 

resolution) radiance fields were simulated within the Nonlocal Independent Pixel Approximation 

(NIPA), an improved version of the Independent Pixel Approximation (IPA) that uses only the 
local optical thickness, Scale-by-scale analyses of liquid water variability inside stratus clouds 

indicate scale-invariance over three decades, from =I0 m to =lO km. A simple two-parameter 

fractal cascade model reproduces the observed variability, thus capturing the rich turbulent 

structure in cloud density, hence optical thickness. [PA-based radiation fields of these models 

preserve scaling properties of fractal cloud models. at least for small moments; however Landsat 

cloud scenes show a characteristic scale (200-300 m) below which radiance fluctuations are much 

smaller. This is shown to be the effect of physical smoothing by horizontal photon transport. As a 

convolution of IPA field with gamma-type smoothing kernel, NIPA emulates this radiative 

smoothing and produces realistic Landsat-type images. Their statistical verisimilitude is checked 

with multifractal analyses. The simulations are graphically illustrated and compared with a real 

Landsat scene. 

1 Introduction 

Although it is well-recognized that clouds vary horizontally, most radiative transfer 

calculations for clouds in atmospheric dynamical simulation models still assume 
horizontal homogeneity. Suffering from a lack of data on cloud properties, the hope has 
been that these variations are unimportant for the bulk radiative properties. However, not 
only mean optical depth but also its spatial distribution affects cloud radiative 
properties. l ,2 

By the mid-1980’s the fractal nature of cloud shapes became clear.3 It is also well 
known that turbulence produces fractal structures. Together, these facts suggest that cloud 
internal structure can be simulated with fractal models. Indeed, the fractal cascade 
models4p5 simulate the horizontal variability of liquid water observed in marine 
stratocumulus (SC) c1ouds.677 Power-law behavior of its energy spectrum, 

E(k) = k-p, k = l/r 

is valid over a large range of scales r = l/k, from several meters to tens of kilometers; 
spectral exponent p ranges from 1 to 2. 

For inhomogeneous clouds, the “Independent Pixel Approximation” (IPA) calculates 
the radiation properties of each pixel using 1D plane-parallel radiative transfer theory.8 
Although IPA is a nonlinear transformation, to a first approximation, it preservers the 
scaling properties found in cloud models. However, recent analyses of Landsat cloud 
images of marine Sc6*g,1o showed that, while the fluctuations of the radiance field follow 
those of cloud liquid water at large scales, at small scales, they exhibit much smoother 
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behavior. Hence a scale break in the radiance energy spectrum was found, meaning that 
there is a characteristic scale that separates two distinct scaling behaviors. As a result, 
IPA describes well the large-scale fluctuations of radiances, but overestimates them at 
small scales. 

The shortcoming of IPA for small scales comes from the fact that while using plane- 

parallel radiative transfer theory locally, it ignores net horizontal photon transport. In 
order to simulate Landsat imagery down to very small scales and improve IPA without 
resorting to costly Monte Carlo (MC) schemes, we use a so-called “Nonlocal Independent 
Pixel Approximation” (NIPA) which, in empirical way, accounts for photon horizontal 
fluxes. 

Fig. 1 Portion ofa Lundsnr image in channel 2 (0.524I.60 /IRIJ. This 4x4 km2 marine SC scene was captured 

at f = 30 m resolution off the coast of San Diego (Ca). For the whole image, about 7% of the pixels are 

saturated at gray-level 255. 

2 Landsat Radiances 

2.1 Wavenumber spectrum 

Figure 1 is a typical Landsat cloud scene, a 4x4 km2 portion of a Thematic Map image, 
128x128 pixels. It was captured June 30, 1987, during the First ISCCP Regional 
Experiment (FIRE) and clearly illustrates the intricate structure of a marine SC deck that 
extends far beyond this area. 

Marine SC is arguably the closest cloud-type to a horizontally homogeneous layer. 
SC clouds are typically 300 m thick and 1000 km more across. Their mean optical 
thickness is =1&15, and frequently their cloud fraction approaches 100%; hence we will 
focus on their internal structure, assuming no gaps, over a range of scales from =lO m to 
~10-20 km. 

The first scaling analysis of Landsat data performed in Ref. 6. Figure 2a shows a 2D 
energy spectrum E(k) plotted against wavenumber k in log-log axes. By using over 
4~10~ data points, the statistical noise is low enough that we can see at least two distinct 



scale-breaks: one at 0.2-0.4 km, and one at =20 km. Between these two limits, power- 
law behavior prevails with an exponent p = 2 in Eq. (1). This two order of magnitude 
range of scale-invariance indicates the fractal nature of clouds. Studies1 1 based on 
multiple instruments show that the scale-break at 20 km is not robust but the one at 200- 
400 m is. 

The transition at scales 0.2-0.4 km to smoother behavior has a special interest; we 
will discuss it in details in Section 5. Here we only note that this scale-break is due to 
radiative smoothing and we will call it the “radiative smoothing scale.” Because of the 
resolution of Landsat images (= 0.03 km), we do not have enough scales below 0.2 km; 
thus the question about small-scale fractal structure of Landsat radiances remains open. 
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Fig. 2 Energy spectrum and structure functions of the 61x61 km* radiunce$eld, n portion of which is in 

Fig. I. Arrows indicate the characteristic scales. (a) E(k) was averaged over 2048 columns for r = I/k going 

from 2P = 60 m to L = 20481~ 61 km. The scale-break is clearly seen at r = 1W200 m. The dots correspond 

to octave-wide bins m k. (b) Sq(r) (y=l. 2, and 3) was averaged over 2048 columns for I I values of r, from P 

= 30 m to 20481= 61 km by factors of 2. 

2.2 Structure functions 

The robust feature of scale-invariance between ~0.2 km and =20 km can be also 
apprehended in physical space. Let V(X) E [0,255] be the gray-scale value, approximately 
proportional to nadir-viewing radiance, of the Landsat pixel at x = (x1,x2) E 
[O,L-l]@[O,L-l] where we adopt a unit of length with pixel size e = 1; thus L = 2048. 

In statistically isotropic situations, the “structure functions” ([cp(x+r)-cp(x)lq) are 
functions of r = Irl alone, and we can write 

Sq(r) = ([cp(x+r)-cp(x)]q) - X(q), q 2 0. (2) 

The extension of this statistic for q < 0 is discussed in Ref. 12. Note that the function 
Q(r) is related to E(k) by a Wiener-Khinchin theorem: 

cm = P-1. (3) 

Another special exponent is 

Hl =[(1)20 (4) 

which is called the “roughness” or Hurst exponent; it varies from zero to unity. 
Some general statements can be made about Sq(r) and c(q) as functions of q. First, 

proper normalization in (2) requires c(O) = 0. Furthermore, C,(q) is a convex function13 



and it is also non-decreasing if its increments are bounded14T15. For narrowly distributed 
increments, i.e., Sq(r) = Sl(r)q, Eq. (2) yields 

C(4) = 4H1; (5) 

a single exponent H 1 determines the scaling of all the statistical moments of the 
increments. This is a characterizing property of fractional Brownian motion (fBm)16. 

We have computed Sq(r) for r/t = 1, 2, 4, . . . . 2048 where ! = 30 m using the same 
data as for Fig. 2~7. The range of moments q is from 1 to 5 with increments of 0.2. 
Figure 2b illustrates the scaling properties of Sq(r) for q = 1, 2 and 3. These curves 
reproduce ID structure functions averaged over 2048 lines. Similar to the energy 
spectrum, we see two scale breaks: the transition to stationary behavior (slopes =O), and 
the transition to smooth behavior at small scales that we will return to in Section 5. 

In Fig. 3, c(q) for the Landsat radiances is easily distinguishable from that of fBm in 
Eq. (5) with the same H1 = 0.56. However, we cannot rule out statistical compatibility 
of fBm and the radiance fields until finite sampling and finite size-effects are examined. 
The later are incorporated in the analysis presented in Ref. 17 showing that the radiance 
field is, at best, weakly multifractal in comparison with the definite multifractality of the 
cloud models described in the next section, and the observed l8 internal structure of marine 
SC on which they are based. 

3 Scale-Invariant Cloud Models 

In this section we use stochastic models to simulate the natural fluctuations of cloud 
optical depth. The analyses of liquid water content (LWC) fluctuations inside marine SC 
during FIRE and ASTEX (Atlantic Stratocumulus Transition Experiment) support scale- 
invariant models that obey power-law statistics over at least three orders of magnitude in 
scale.7*18 

Starting with a homogeneous slab of length L, one can build a mass-conserving 
model by transferring a fraction fl of the mass from one half to the other in a randomly 
chosen direction. This is equivalent to multiplying the originally uniform density field 
on either side by factors WI(*) = kkfl. The same procedure is repeated recursively at ever 
smaller scales, with fractions fi, i22. 

3.1 Singular Cascades 

We now parameterize the multiplicative weights as 

wp = lf(l-33) = 
1 $1~J 

0 Ip < l/2, i = 1,2 )..., 6) . 

independently of i, with 50150 probability for the signs. This leads to the multifractal 
“p--model”19 ( ) h E x w ere p directly controls the degree of concentration at each cascade 
step. The spectral exponent defined in Es(k) - ~-BE, k > 0, is 

0 I P&) = 1 - log2[ l+( l-2p)2 ] < 1. (7) 
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Singular cascade models E(X) have interesting intermittency properties but their 
spectra with. PE < 1, do not scale as observed optical depth fields Z(X) that invariably have 

PT> 1. 

3.2 Bounded Cascades 

A simple way to obtain pr > 1 is to reduce the variance of the multiplicative weights in 
Eq. (6) at each cascade step. Taking 

Wi(‘) = l+(l-2p)ri-j H, 0 Sp < 112, H > 0, ri = L/2’. (8) 

leads to “bounded’ cascade models.5 The limit H + 03 yields a single jump (Heaviside 
step) from 2p to 2( 1 -p) at x = L/2. 

By reducing the size of the jumps as the scale decreases. we are introducing a degree 
of continuity into the model. As a result, its spectral exponents moved into the range 

1 < j?iT(H) = min[2H,l) + 1 2 2, (9) 

independently of p. 
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Fig. 3 Comparison c?~exponentfunctions c(y). Two nadir radiance fields: Landsat data (scale range between 

0.14.2 km and l&20 km) and IPA-simulated Landsat data with fractionally integrated (FI) cascade model of 

optical depth (all scales involved). Bold dots represent cloud optical depth models: fBm (H = 0.5), bounded 

(H = 0.5) and FI 0, = 0.32 and H* = 0.54) models. Both fBm and bounded models show theoretical results, 

the rest are numerically obtained. 

In the limit of infinite number of cascades, the bounded model hasI 

C(q)= { 
qH,Olq< 1/H 
1, l/HIqIc- ’ (10) 

so Eq. (9) follows from Eqs. (3) and (10). Thus the bounded cascade model, while 
multifractal. cannot be distinguished from monoscaling fBm for moments smaller than q 

= l/H. 
To summarize, bounded model is a well-studied tutorial model of horizontal 

inhomogeneity of cloud optical thickness. To a first approximation, it reproduces lower 
order statistical moments of cloud liquid water distribution. However, as follows from 
Eq. (IO), its c(q) 2 1 whereas l8 the higher-order moments of LWC fluctuations 



substantially exceed unity. In the next subsection we describe another model, fractionally 
integrated cascades4, that overcomes this limitation. 

3.3 Fractional Integration 

Another way of transforming the situation described in Section 3.1 (singular cascades with 
& < 1) into a more realistic one (pr > 1) is power-law filtering in Fourier space4; this 
will bring the spectral exponent to any prescribed value. In particular, we have 

P&Jf) = IMP) + 2H* (11) 

where H* describes the low-pass filter in k-IF’. In physical space, this operation -also 

known as “fractional integration” (FI)-- is a convolution with a weakly singular kernel. 
In contrast to the bounded model, we are unable to derive analytically structure 

function exponents for FI model for all values of q. Instead, we simulated nine 2D 
cascades and the associated FI models with p = 0.32 (Pc = 0.82) and H* = 0.54, which 
according to Pqs. (7) and (11) yields pr = 1.9. Structure functions Sq(r) are computed 
numerically for each stripe and estimated over all 29 = 512 stripes. To demonstrate 
scaling behavior of FI model, the first three moments of Sq(r) vs. scale r are plotted in 
Fig. 4. We see that slopes representing c(q) (q=l, 2 and 3) increase nonlinearly. This is 
an indication of the multifractal origin of this model. 
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Fig. 4 Structurejiinctions S,(r) (y=l, 2, and 3) for the fructionally intepzted cascade model. 

To compare three models (monofractal fBm and two multifractal models: bounded and 
FI), we plotted their structure functions Sq(r) in Fig. 3 for q from 0 to 5 with 0.2 
increments. As we see, the bounded model is the “most multifractal” among them since 
its c(q) is the most nonlinear. With at least one more tunable parameter than bounded 
cascades, FI cascades are better candidates for simulating observed liquid water 
fluctuations. l”T1 8 

In the next section we briefly discuss the simplest radiative transfer method that can 
treat horizontally inhomogeneous cloud structure; we apply it to the FI cascade model 

described above. 

4 Simple Radiative Transfer 

The simplest way of treating radiative transfer in a horizontally inhomogeneous cloud 
model is to use an “Independent Pixel Approximation” or IPA. This amounts to 
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applying plane-parallel theory on a per pixel basis. In other words, the IPA ignores any 
net horizontal photon transport. As a result, the domain-averaged of plane-parallel 
radiances, (Rpp(~)), depends only on the one-point probability distribution of the optical 
depth field. To compute Rpp, one can use any general purpose plane-parallel radiative 
transfer code. 

Since radiance Rpp is a convex function5, Jensen’s inequality20 states that (R&z)) 
I Rpp((z)), i.e., the domain-averaged plane-parallel reflectivity is larger than its IPA 

counterpart. The difference between left and right parts in the above inequality is called 
“plane-parallel bias”.8 For typical marine SC albedos, the bias is about 15%; this means 
that in order to obtain the correct albedo from a plane-parallel model, 30% less liquid 
water must be used. 

Optical thickness IPA radiance 

NIPA radiance MC radiance 

Fig. 5 20 optical thickness and nadir radiancefields. (a) Density plot of the optical thickness simulated by FI 

model @ = 0.32 and H* = 0.54). The dense regions are white, the least dense regions black. The shade of 
gray is linearly proportional to the pixel value. Optical thickness varies from 4 to 43. (b) F+ for sun at 22.5” 

and a photon-scattering kernel with an asymmetry factor g = 0.85. The cloud is illuminated from the top of 

the image. Cloud geometrical thickness h = 300 m and the horizontal grid size is 128x128 with 30-m pixels. 

The gray color range is from 55 (black) to 255 (white). (c) &I&? for the same conditions as in panel b The 

gray scale range is the same as panel b. (d) RMC for the same conditions as in panel b The gray color scale 

is the same as in panel 6. 
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From the other side, using Monte Carlo (MC) results as a standard of comparison, it 
is shown5 that the IPA is very accurate for large-scale averages in the case of SC clouds 
with internal LWC fluctuations modeled with bounded cascades. The same is true for FI 
models of cloud liquid water. 

Figure 5b shows a nadir radiance field of equal size and resolution as the one of 
Landsat in Fig. 1; however, it does not have the scale-break at 0.1-0.2 km. The 
radiances were computed by IPA applied to FI model of cloud optical thickness (Fig. 5a) 
on a pixel-by-pixel basis. (To better simulate Landsat measurements, we first found a 
threshold that yields the same fraction of saturated pixels as in a Landsat cloud scene and 
then set to this threshold all IPA radiances which exceeded it; next we digitized the results 
on 255 levels.) 

Parameters p and H* of FI model were chosen in such a way that the hierarchy of 
structure function exponents c(q) of (saturated and digitized) IPA radiances matches those 
of Landsat. We can see that two curves in Fig. 3 are almost identical for moments up to 
order 5. It is interesting to notice that there is not much difference in c(q) between cloud 
models and IPA radiances for moments smaller than about 1.5. Indeed. because of the 
continuity property of the random field Z, for small enough moments we have 

IARIplq - J iA@ (12) 

where is J is the Jacobian of R vs. z which is bounded. This argument however fails for 
higher-order structure functions.9T10 

In the next section we show how to improve the IPA based simulations of Landsat 
cloud scenes. We will use interpixel radiative corrections which yield much smaller 
fluctuations of radiances on scales below the radiative smoothing scale. 

5 Small-Scale Corrections 

As we could see in Figs. 2a and 26, there is a transition to smoother behavior around 0. l- 
0.2 km: both energy spectra and structure functions show steeper slopes for small scales. 
This scale-break is due to the radiative smoothing effect of multiply-scattered 
photons9*10; thus the characteristic transition scale has been called “radiative smoothing 

scale.” Using the diffusion approximation, the radiative smoothing scale 17 is the 

harmonic mean between photon transport mean free path and geometrical cloud thickness. 
This can be written as 

rl = w-gxw”*, (13) 

where h and (7) are respectively geometrical and (mean) optical cloud thickness, and g is 
the asymmetry factor. For typical marine SC 6, h = 0.3 km, (7) = 13, and g = 0.85; Eq. 
(13) then yields r\ = 0.22 km which is consistent with those observed in Figs. 2a and 26. 

Next, studying numerically the distribution of the “spot” of reflected light associated 
with a point-wise source (essentially the cloud’s radiative Green function), it was found9 
that the spot can be well approximated by a two-parameter gamma-type distribution, 

P(a.q; x) = c (xl2 + x~~)(~-l)/~ exp(- 
(x12 + ,22)“2 

rl 
>, a>O,q>O (14) 
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where c is a normalization constant and x = (xl $12). In addition to parameter IJ defined in 

Eq. (13), we have a parameter a = (~)~/({r~)-(x)~), w IC can be estimated numerically. h’ h 
Note that, while q defines the scale-break, a determines the behavior of scales smaller 
than r~. For nadir radiance in marine SC type clouds, cx = 0.5.9 

Finally. to improve IPA for small scales we use a convolution of the IPA radiance 
field with the gamma-type smoothing kernel in Eq. (14), 

(1% 

One can show9 that for scales larger than TJ energy spectra E(k) of RNIP and RIP are alike; 
however small-scale spectrum of RNIP has much steeper slope which is defined by CX, TJ, 
and the original slope. 

Figure 5c shows RNIP radiance field which was computed in Fourier space using Eq. 
(15). As expected, fields in Figs. 56 and 5c have similar large-scale variability; the small 
scales in Fig. 5c however are much smoother. In contrast, Figs. 5c and 5d look much 
closer (in the later, we plotted the results of MC applied to cloud model in Fig. 5~). Note 
that the CPU time for the calculation of RNIP was about 5000 shorter than for RMC! 

6 Summary 

We used both structure functions and energy spectra to analyze Landsat images of marine 
stratocumulus clouds. Good scaling from about 0.1-0.2 km to 10-20 km (Figs. 2a and 
26) indicates the fractal structure of the Landsat radiances and suggests the use of scale- 
invariant models to simulate horizontal distribution of cloud optical depth. Two two- 
parameter cascades models- bounded5v8 and fractionally integrated4T17-were chosen to 
simulate cloud structure. Both of them are stochastically continuous and have a spectral 
exponent pr > 1. Structure-function analysis of bounded cascades yield15 c(q) I 1. As 
this is not the case for real clouds’ 8, a more flexible fractionally integrated cascade model 
has been used for the radiation field calculations. 

The simplest radiative transfer technique to treat cloud horizontal inhomogeneity is 
the “Independent Pixel Approximation” (IPA) which uses standard plane-parallel theory 
but on a pixel-by-pixel basis. Since IPA preserves scale-invariance of cloud structure, the 

resulting radiation field (Fig. 5b) does not have any characteristic scale and its structure 
functions exhibit straight lines on a log-log plot for all scales. The c(q) of the IPA field 
is similar to the one of Landsat cloud scene onfy for scales larger than 0.1-0.2 km. For 
small scales, both Landsat (Fig. 1) and MC calculated radiance fields (Fig. 5d) show much 
smoother than the IPA field behavior; this is due to the radiative horizontal fluxes 
ignored by IPA.9l10 

To improve IPA performance for small scales, the “Nonlocal” IPA (NIPA) was 
applied to a scale-invariant optical depth model. Unlike IPA, NIPA takes into account net 
horizontal transport; the large-scale fluctuations of NIPA are similar to those of IPA 
while the small-scale behavior is smoother and reproduces statistical properties observed 
in Landsat data and simulated with MC.9 Two fields NIPA and MC are illustrated in 
Figs. 5c and 5d. 

To summarize, Landsat cloud scenes simulated with NIPA applied to FI cascade 
models of cloud optical depth reproduce both scale-invariant structure of large-scale 
fluctuations and smooth behavior of small scales of observed Landsat images. This 
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conclusion is based on a scale-by-scale structure function analysis of both simulated and 
satellite-measured fields. 
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